All Georgia Tech sponsored events through April 30, including athletics competitions, are cancelled, postponed or will move to a virtual format. We are reviewing all events April 30 and will provide guidance at a later date. 


Monday, February 3 2020
11:15am - 12:15pm
Krone Engineered Biosystems Building, Room 1005 - Atlanta, GA
For more information:

Garrett Stanley - faculty host

Add To My Calendar
GT Neuro Seminar Series

“Straighten Up and Fly Right:  Navigation and Motor Control in Fruit Flies”

Michael H. Dickinson, Ph.D.
Esther M. and Abe M. Zarem Professor of Bioengineering and Aeronautics
California Institute of Technology

Over 400 million years ago, a group of tiny six-legged creatures evolved the ability to fly—an event that fundamentally transformed our planet. Equipped with the ability to fly, insects underwent an extraordinary radiation and have dominated every terrestrial ecosystem ever since. In order to employ fly effectively, these ancient insects must have possessed the rudimentary ability to take off, fly stably, disperse, forage, and land — a core set of behavioral modules that constitute a ‘Devonian Toolkit’. The fact that the basic architecture of the nervous system is remarkably uniform across species, further suggests that many behaviors of modern insects are deeply rooted in a common evolutionary history. My lab is attempting to reconstruct the behavior and ecology of ancestral insects through investigations of the common fruit fly, Drosophila melanogaster. Most experiments on fly behaviors have been confined to small laboratory chambers, yet the natural history of these animals involves dispersal that takes place on a much larger spatial scale. New release-and-recapture experiments in the Mojave Desert confirm that flies can navigate over 10 kilometers of open landscape in just a few hours. Such excursions are only possible because flies can actively maintain a constant heading. In this talk, I will discuss a hierarchy of neural mechanisms that enable flies to maintain a stable course in the face of external and internal perturbations. Collectively, this new research provides insight into ancient sensory-motor modules that have helped make insects the most successful group of animals in the history of life.